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SPECTROCHIMICA ACTA, submitted
Proceedings of the International Conference on
"Chemistry by IR Lasers" held in Liblice,
Czechoslovakia, September 29-October 3, 1986

Dynamics of a laser-irradiated adatom

Sander van Smaaln, Andr& Peremans,* Honk F. Arnoldus and Thomas F. George

Departments of Physics & Astronomy and Chemistry. 239 Froncsak Ball.
State University of New York at Buffalo. Buffalo. Now York 14260, U.S.A.

Abstract - The dynamics of an adsorbed atom irradiated by an I.t. laser
in resonance with a single pair of states of the vibrational adbond is
studied. Using a non-perturbative treatment for the laser-adbond
interaction, a master equation is derived, which governs the time
evolution of the populations of the laser-dressed states of the adbond.
The effect of resonant heating and laser-induced desorption, as an
example of a possible laser-induced surface process, Is discussed.

the laser excite the adatom, which excited
INTRODUCTION states will be populated, and where does

the absorbed energy So? Purthermore, the
It has been realized for quite a time that feasibility of laser-induced (resonant)
laser irradiation can affect or induce desorption is discussed.
chemical reactions (1.2j. Combining this
with the common knowledge that surfaces, RELAXATION AND CO0MWT CITATION
i.e., catalysts, can influence chemical
reactions, then opens the interesting We consider an adsorbed atom on a harmonic
possibility of Joining the control by crystal, irradiated by a laser, which is
lasers and surfaces, in order to manipulate tuned into resonance with a single pair of
the occurring chemical reactions in greater levels of the vibrationally bounded atom
detail. A quantitative theoretical 13-5]. Only the motion perpendicular to
treatment of a chemical reaction is very the surface is taken into account, because
involved. However, the first step in a the lateral otion (migration over the
chemical reaction Is the formation of an surface) hardly couples to the field. The
activated complex. The energy necessary adbond is represented by its reduced
for the formation of the complex can be density operator (61
extracted from the translational and
vibrational energy of the reactants or
added inert species. Here enters one 0(t) Tr p(t) (1)
possibility of applying a laser to modify
the reaction, since reacting molecules
might acquire the necessary energy to where the trace is over the quantum states
become excited to high vibrational or of the crystal and over the radiation
electronic states from the radiation field. states. With standard techniques 16,71, it
Surfaces alter reactions via the induced is esy to show that in absence of a laser,
modifications of the adsorbed species and the time evolution of the level populations
by the fact that they restrict the motion P (t) - <nlo(t)In> is governed by the
of the molecules. The role played by a master equation
laser in a surface reaction is more
complicated than for Sam-phase reactions.
The radiation may excite the molecule
before adsorption, it may excite the ? t
substrate, or it may excite the already a W (&kn Pk(t) - ank Pnt) (2)

adsorbed molecule. We shall only consider k
the latter mchnim.

Detailed comprehension of laser-
induced surface reactions starts with the
study of the dynamics of a single adsorbed where a is the rate constant for the
molecule which Is illuminated by a strong transitiie from level n to level k, and the
coherent field. In this paper we shell sumiation extends over the eigaensttes of
focus on recent developomts in the theory the adbond. The rate constants are
of the dymmic. of vibrationally-excited determined by the interaction of the adbond
stem. Topics to be covered ares Now can with the substrate. Most extensively

studied is the relaxation of the adbond due
to the lattice vibrations (3-51. A

_ _ _ _ _ _ _transition from state In> to state ih is
C Aspirant du lands National de la then accompanied by the emission into or

Becherche Scientifique, Bruzelles. the absorption from the substrate of one or
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more phonons. For one-phonon processes the also expected to be a good approximation
rate constants are given by 14) for the laser interaction (101. The second

assumption is the Harkov approximation (6).
which asserts that ye can replace o(t-t e )

nk - 2Snk2 f(wnk )  (3) by Ct) in Eqn. (6). This can be Justified
if a(t) does not change such on a timecale

on which K(t,t') decays to zero as a
4 (vwn; ) (5(wnk) + 1) (4) function of t' for fixed t. For phonons.

this is the characteristic time of thedisplacement autocorrelation function,
which is sufficiently short 111). For the

where wk - w - wl denotes the transition laser interaction the decay time of K(t.t')
frequenc9, HiI the ass of a surface atom, is the correlation time of the laser, which
5(e) - (exp(Ow/kT) - 1] , and S is the is essentially infinite for monochromatic
matrix element of the derivatiVE of the radiation. It was found that for
adbond potential. The function g(Iw. 1) is reasonable laser intensities the Karkow
the density of phonon states. -7or a approximation gives poor results (10).
transition frequency which is larger than Then an integrodifferential equation (Eqn.
the Debye frequency. &(1 w, 1) is (6)) has to be solved, rather than a master
vanishingly small, and muliphonon equation.
transitions have to be taken into account A non-perturbative approach to the
(M1. On metals the coupling with laser-adbond interaction was developed
electronic transitions in the conduction recently (4]. Here the lHamiltonian of the
band provide another possible channel for adbond, the laser field and the interaction
relaxation (9,10). was diagonalized. and subsequently the

The interaction between the laser and phonon damping was taken into account in
the adbond can be treated analogously to the usual way. Note that with this
the phonon interactions 1I1. provided that alternative treatment the problems with the
the intensity is not too high. This yields 1arkov approximation do not arise. Besides
a similar master equation as Eqn. (2). The that, the method applies to arbitrary
transition rates then divide into a phonon strong irradiances.
part (Eqns. (3) and (4)) and a term due to Let us denote the eagenstates of the
the interaction with the laser, which adbond by k>. and in particular by IS> and
represents radiative stimulated Ie> the two states which are coupled by the
transitions. The latter only occurs in the laser. Then the eigenstates of the adbond
rate constants a and a for the coupled Hamiltonian, the laser field and the
levels IS> and e,>, eft is found to be interaction are given by 1k for k * e.g.
proportional to the laser intensity or, but I8> and Is> are superposed to yield the
equivalently, to the square of the Rabi so-called laser-dressed states (4,121.
frequency Explicitly we obtain

S- ) ... (5) *+> sin(C/2)Ig> + cos(0/2)le> (7)

where U is the transition-dipole matrix 1-> cos(e/2)I> - sin(S/2)Je> (a)
element, and I denotes the amplitude and
polarization of the electric field of the with S - arctan(0/h) and a the detraing of
laser. the laser from resonance. Subsequent

The successive approximations involved coupling to the phonon reservoir then
can easily be studied with the Zvanzig results in a master equation for the
projection technique (7). for the time dressed-state populations. The transition
evolution of the reduced density matrix we rates asum a more complicated form then
find the exact equation given by Eqn. (3). For example, the

transition from I+> to k> With k a e.g is

do j(I In tW) given by the rate constant (4)

h -Ik 8 flN+k)ISakI 
2  8+f(w+k -L)ISSk l2

- Trb dt' Ktt') Pb(t-t*) (6) (9)

where the damomy kernel t(t't') contains with . a cos2 e(412)0 S a sin2 (012), and
the the ailmonin of the dato, co, the is the laser frequency. A particularly
bath, and their interaction. Ne P transparent interpretation arises if two
equals the density matrix of the beth i[ energy levels are assigned to a single
thermal equilibrium. The first dressed state. Then u and we - w1 can be
approximation is to retain in I(t,t') only regarded as the aigenvalues ofT.>, and
the lowest-order (second-order) terms in similarly W and W4., represent the
the interaction. This is assumed to be positions of 1->, as is llustrated in Fig.
accurate for the phonon coupling and is 1. The transitions from 10) to Ik> then

,., e . I " " ,..",r . r.."e .-.- "k'" ¢ r % '"' '."-r.-','-"';'.'f' ' ' ' ' ' " . )- ' .,.':.. . .% .J~,.. , 'e,,,> AL
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Fig. 1. The energy levels of the adbond plus the laser are represented by
the diagram (a) on the left-hand side. The number of photons in the laser
mode Is indicated by n, and 6 is the laser frequency. Diagram (b) shows
the energy levels of the eigenarates of the adhond and the laser, Including
the interaction. The adbond states IS> and IS> are then replaced by the
dressed states j-> and 1+>. The occurring phonon transitions are indicated
by arrows. The left-most three transitions persist when the laser is turned
off. The other transitions occur only in the presence of the laser. Apart
from the change in adhond state and in the number of phonons, they also
involve the absorption or emission of photons.

contain transitions from level .w+ to w, A ) 'p( ' ) (10)

and from level w4 -W to w. The phon~n n
energies involved are exactly the level k
distances. as depicted in Fig. 1.

Transitions between either one of the Here, A' and - except for
levels w. or w and a level w and

transitions between and w (k. * + ot -) a' and a* which are given by
survive when the laser ii turned off.
Bence they can be interpreted as pure- A +A
phonon transitions. The additional a - a + e a 2
transitions also require the absorption or g as (A, + A )2 + 4&2
mission of photons. For a low intensity
the rate constants for these transitions
are proportional to the laser power (one- As + _ _ _2._(1)

photon process) or its square (two-photon a ;a aso + (A A 2 a 12
process). For high intensities they assume ge + A (
saturation values, corresponding to the
value S a t w/2 in the parameterization of
the dressed states. Note that in the steady state the Markov

The coherences between the dressed approximation for the laser field gives the
states evolve independently from the sam result as the non-perturbative
populations. It can be shown that they approach (10).
vanish exponentially in time 14). The
inverse of tqns. (7) and (8) can be used to MIGY FLO
derive an equation for the populations of
the bare states. It then follows that the A phonon transition from state Jk> to jI>
equations for the populations are coupled changes the energy of the substrate by an
to those for the coherences P and P . amount of the phonon energy 9uj . Phonon
This result is different from pturbatfon absorption lovers the substrate energy, and
theory, which yields a master equation for phonon emission raises its energy content.
the bare-level populations, regardless of In equilibrium (and without a laser) the
the time evolution of the coherence*. net energy exchange between the adbond and

Sufficiently long after the switch-on the substrate is zero. In perturbation
of the laser, the system will reach a theory the laser gives rise to transitions
steady state, for which the reduced density between the two levels I> and 1g>. With
matrix of the adbond remains constant in each transition an energy quantum h.. is
time. for d? /dt a 0, the coherences exchanged between the laser and the adband.
between the %iare states can then be In the non-perturbative approach the
eliminated, and a genuine master equation absorption/mission of photons is
for the bare-level populations incorporated in the diagonalisation,
arises (4,13). We find resulting in the appearance of dressed

states, and only the phonon transitions
remain explicitly present (Fig. 1).

_'" IL



The populations are time independent low Intensities the energy flow is
In the steady state, as is the adbond proportional to the laser intensitys
energy. The only effect of the transitions whereas for high intensities saturation
beteen the dond states is then to carry occurs. This is illustrated by the
b net energy flow from the laser Into the derivation of an upper bound (Eqn. (14)).
substrate, process hich is called It follows that the energy flo is limited
resonant heating p14l. The energy nhich Is by the excited-level population, multiplied
absorbed by the crystal per unit of time is by its decay constant. This clearly
ivn by 13p1516m exhibits that, yhen the laser is used to

maintain the adbond in an excited state, a

As + At fast heating of the crystal is inevitable.
dt Moreover. the ratio of the excited-level"t IM ( e +A)2 + 4&2 population and the energy flow (considered

A + as a measure of the efficiency of one

02 (P~) P (0). (13) process over the other) appears to be
S ( independent of the laser power.

To be specific, let us compare the
efficiency of a laser-induced surface

For low intensities the populations of Is>  process and the energy flow. A measure ofand I> are hardly altered by the this is the number of photons hich isradiation. and hence It fallws from Eqn. necessary t number ohe desired process.
(13) that the energy flow is proportional divided by the number of photons hich hoest
to the intensity flow. It can e shoron d d the substrnte. As an example we have
tne. (10) end (13) that the quantity studied setr-inducd desorption an m e . t

S( (1)-p (t) become independent of it.  is found that for l temperatures this
and onseq ntly the energy flow saturates ratio is independent of the laser pa er
An upper bound for the energy flow is (151 and such smaller thn unity, indicating

that laser-induced (resonant) desorption

4d cannot be expected to be a very efficient

i- J %a A4 Pe(-) (14) process.
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